Calculate the compressibility factor and the molar volume of methanol steam at 200°C and 10 bar

a) using the ideal gas law
b) with the virial equation truncated after the 3rd virial coefficient

\[v_m := \frac{R \cdot T}{P} \]
\[v_m = 3.934 \text{ mol}^{-1} \text{ dm}^3 \]
\[z = 1 \text{ by definition} \]

Solution by using the virial equation:

\[\frac{P \cdot v}{R \cdot T} = 1 + B \cdot \frac{1}{v} + C \left(\frac{1}{v} \right)^2 \]

The tolerance has to be decreased for receiving a more precise result.

\[\text{TOL} := 10^{-18} \]

For solving the equation the root-function is used. Finding the root requires a starting value for the volume:

\[v := \frac{R \cdot T}{P} \quad v = 3.934 \text{ dm}^3 \text{ mol}^{-1} \]

\[v_m := \text{root} \left[\frac{P \cdot v}{R \cdot T} - 1 - B \cdot \frac{1}{v} - C \left(\frac{1}{v} \right)^2, v \right] \]
\[v_m = 3.695834 \text{ dm}^3 \text{ mol}^{-1} \]
\[z := \frac{P \cdot v_m}{R \cdot T} \quad \Rightarrow \quad z = 0.93948 \]

For not too high pressures where the effect of the 3rd virial coefficient is not predominant, fast convergence can be achieved by iteratively the value of \(v_{it} \):

\[v_{it} := \frac{R \cdot T}{P} \quad \Rightarrow \quad v_{it} = 3.934 \text{ dm}^3/\text{mol} \]

\[\frac{P \cdot v}{R \cdot T} = 1 + B \cdot \frac{1}{v} + C \cdot \frac{1}{v_{it}} \]

The solution of interest for \(v \) (and at the same time \(v_{it} \) for the next iteration) of this quadratic equation in \(v \) can be found via "Symbolics, Variable, Solve". The cursor has to be on one of the "v" variable symbols in the equation above:

\[v_{it} := \frac{1}{2 \cdot P \cdot v_{it}} \left[R \cdot T \cdot v_{it} + \left(R \cdot T \cdot v_{it} + 4 \cdot P \cdot v_{it} \cdot B + 4 \cdot P \cdot C \right) \right]^{1/2} \]

\[v_{it} = 3.696157 \text{ dm}^3/\text{mol} \quad \Rightarrow \quad v_{it} - v_m = 3.223 \times 10^{-4} \text{ dm}^3/\text{mol} \]

Solving the equation again with this improved value of \(v_{it} \) leads to nearly the exact result:

\[v_{it} := \frac{1}{2 \cdot P \cdot v_{it}} \left[R \cdot T \cdot v_{it} + \left(R \cdot T \cdot v_{it} + 4 \cdot P \cdot v_{it} \cdot B + 4 \cdot P \cdot C \right) \right]^{1/2} \]

\[v_{it} = 3.695835 \text{ dm}^3/\text{mol} \quad \Rightarrow \quad v_{it} - v_m = 4.644 \times 10^{-7} \text{ dm}^3/\text{mol} \]

In order to find an analytic solution, first apply the operation "Symbolics - Factor"

\[\frac{P \cdot v}{R \cdot T} - 1 - B \cdot \frac{1}{v} - C \cdot \left(\frac{1}{v} \right)^2 = 0 \]

to yield the following expression:

\[\frac{\left(P \cdot v^3 - R \cdot T \cdot v^2 - B \cdot R \cdot T \cdot v - C \cdot R \cdot T \right)}{R \cdot T \cdot v^2} = 0 \]