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Example 05.04 Construct a Diagram with gE, hE and -TsE

problem: Construct a diagram with the thermodynamic excess properties g€, hE and -TsE for
the system ethanol (1) water (2) from the vapor-liquid equilibrium data of Mertl

(values for gE and hE given in the following vectors):

0.0303 -108.7
0.0596 -173.7
0 0 0.0896 -200.1
0.062 0.1209 0.1238 -194
0.095 0.1696 0.1239 -196.4
0.131 02084 0.1697 -160.9
0.194 02640 0.1905 -149.9
0.252 0.2980 0.2402 -92.2
0.334 03257 0.3021 -24.8
X gB1=1 04011 g rr o | 03208 x_hEj = 03514 hEe| Y
0.593 02913 0.3962 61.6
0.68 0.2465 0.4502 101.3
0.793 0.1737 0.498 129.7
0.81 0.1610 0.5802 151.3
0.943 0.0521 0.5889 153.3
0.947 0.0487 0.6976 135.8
1 0 0.7439 115
0.8022 84
0.8457 62
0.8957 393
number of data points: ngg = rows(x_gEj)  npg = rows(x_hE)
temperature: T = 343.15K
general
constants
and R := 8.31433 <ol

definitions:



Solution

As gE and hE values are not given at the same mole fractions, experimental data are first regressed using
a suitable mathematical function. Typical expressions for this type of data are Legendre polynomials,
Redlich-Kister expansions or sum of symmetric functions. For this example we choose the latter equation
with 6 parameters (order 3) for the excess enthalpy regression:

Norder aSSFz. L [x- (1 =x)]
e
Norder = 3 hESSF(XaaSSF) = Z 5
i=1 x - 1000 aSSF2-i

+(1-x)-
aSSF2~i 1000

We define the objective function OF as the sum of squared deviations between experimental data and
calculated values for all data points:

nhg
2
OF(aSSF) = Z (hEi - hESSF(X_hEli,aSSF))
i=1
A vector with starting values uniformly distributed in the range between -1000 and 1000 can conveniently
be generated using the random function runif:
agSF = runif(2 - nogder, ~1000,1000)
The minimize function will now find the minimum of the objective function by varying the parameter values
in the vector agg:

agsF = Minimize(OF, aggF) OF(agsF) =221 x 10°
The regression result can be visualized in a graphical representation:

i=1.npg x:=0,0.001..1
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In order to better judge the results of a regression, especially with respect to the correct description of
the partial molar excess enthalpy at infinite dilution, the value of -hE/(x*(1-x)*8) is often plotted in the
same diagram. The term is divided by 8 to bring it into a similar order of magnitude.
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The importance of this additional line can easily be demonstrated by increasing the number of parameters
(increase ng4er)- At higher order, the SSF model tends to produce unrealistically high slopes close to
mole fractions of zero or one.



To regress gE or gE/RT precisely, mostly the Redlich-Kister expansion or a Legendre-polynomial is used.
The advantage of the Legendre polynomial lies in the simple calculation of the derivatives required for the
calculation of the activity coefficients. As the Redlich-Kister expansion, the Legendre polynomial is used

to expand the parameter A of the Porter expression gE=A*x1*x2 as function of composition:

gF=x(1x)(a; Q +a,Q,+a; Q; + ..... )

with ay, @y, 8g; .eee adjustable parameters
and Q, =
Q, =2x-1

Q, = ((2k-3)2x-1)Qy 4 - (k-2)Q,)/(k-1)

nJ gg = 6 gELeg(XsaLeg) = Q1 «—1

Q2<—2-x—1

for ke 3..npeq

2-k=3)-Q2-x-1)-Q_, - (k-2)-Q_,
k-1

Q<

0y e

x-(1-x)- Z (aLegi‘Qi)

i=1

We again define the objective function OF as the sum of squared deviations between experimental data
and calculated values for all data points:

l’lgE
2
OF(af ¢g) = Z (gE_RTi— gELeg(x_gEli,aLeg))
i=1
A vector with starting values uniformly distributed in the range between -0.1 and 0.1 can again
conveniently be generated using the random function runif:

aLeg = runif(nLeg, -0.1, 0.1)

The minimization function will now find the minimum of the objective function by varying the parameter
values in the vector 3 g°

1.376

—0.588

aLeg = Minimize(OF,aeg)  OF(apcg) = 1069 x 10 0224
Lee ™| o 108
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The regression result can be visualized in a graphical representation:

x:= 0,0.001..1
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In order to better judge the results of a regression, especially with respect to the correct description of
the partial molar excess Gibbs energy at infinite dilution (and thus the activity coefficients at infinite
dilution), the value of -gE/(x*(1-x)*8) can be plotted in the same diagram. This is usually not required in
case of models like Wilson, NRTL and UNIQUAC, which do not tend to produce higher order artefacts in
the diluted ranges. The representation can be further improved by plotting also -In(y,)/8 and -In(y,)/8.
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The values for -TSE can now be calculated from RT*gE - hE and all three functions as well as the
experimental data can be shown in one diagram:
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