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Component Selection and Model Parameters:

Theory

MW 10
6

W

h 3600sMPa 10
6

Pag 0.001kgdm 0.1m
R 8.31433

J

mol K


bar 10
5

PakPa 1000Pakmol 1000molcm 0.01m

Definitions and Constants:

Problem:
Ethylene from a pipeline (50 t/h, 70 bar, 5°C) passes a heat exchanger and is heated up to 45°C. The 
pressure drop is negligible. As usual, in the data sheet of the heat exchanger the cP values at inlet and 
outlet are given:

cP (  5°C, 70 bar) = 3.984 J/g*K

cP (45°C, 70 bar) = 3.783 J/g*K

Calculate the heat to be exchanged
a) by estimation with an average cP

b) using a high-precision equation of state

Which solution shall be preferred?

 Example 02.06 Isobaric Heating of Ethylene Using a High Precision
Equation of State 



Qflow 2.157MWQflow mflow Tout Tin  cP_av

The heat stream to be supplied by the heat exchanger can then be calculated via:

cP_av 3.883
J

g K
cP_av

3.984 3.783 
2

J

g K


a) In the first step the mean heat capacity in the temperature range between 5 and 45°C is
calculated: 

mflow 50000
kg

h
P 70bar

 Tout  0.887Tout 45 273.15 K

 Tin  1.015Tin 5 273.15 KConditions: 

Solution:
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A starting value close above the hardcore volume is usually possible and ensures finding the liquid root. 
As P(v) covers several orders of magnitude, the objective of the root function should be the relative 
deviation in pressure.
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Different Thermodynamic Functions of T and v:

id and R Functions, Auxiliary Functions

mw 28.054
g

mol
vc 130.947

cm
3

mol
Pc 50.418 barTc 282.35 K
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cP T( )
heos T 0.05K vL_eos T 0.05K P   heos T 0.05K vL_eos T 0.05K P  

0.1K mw


T 278.15K 279.15K 318.15K

There is a large difference between the two results. Although the cP values are correct, approach a) 
does not yield a reasonable result. The problem is that cP has a sharp maximum in the area in the 
vicinity of the critical point, as the following plot illustrates:

Qflow 3.446MWQflow h nflow

nflow 1782.277
kmol

h
nflow

mflow

mw


h 6960.506
J

mol
h heos Tout vout  heos Tin vin 

Although in the supercritical state, the root function does not succeed to find a real solution when 
starting from the ideal gas volume. The second function usually used to find the liquid volume starts at 
a very low liquid volume and converges to the correct solution.

In the next step the molar and total enthalphy difference between inlet and outlet stream is calculated:  

heos Tout vout  5.285 10
5


J

mol
vout 0.223

dm
3

mol
vout vL_eos Tout P 

heos Tin vin  5.355 10
5


J

mol
vin 0.077

dm
3

mol
vin vL_eos Tin P 

b) In the first step the molar volume of ethylene at the conditions inside the pressurized bottle has
to be calculated: 


