
Example 05.04 Construct a Diagram with gE, hE and -TsE

problem: Construct a diagram with the thermodynamic excess properties gE, hE and -TsE for 

the system ethanol (1)  water (2) from the vapor-liquid equilibrium data of Mertl 

(values for gE and hE given in the following vectors):
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gE_RT
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�� x_hE1
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0.3962

0.4502

0.498

0.5802

0.5889

0.6976

0.7439

0.8022

0.8457

0.8957

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�� hE

108.7	

173.7	
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number of data points: ngE rows x_gE1�� nhE rows x_hE1��

temperature: 
T 343.15K��

general 

constants 

and 

definitions:

R 8.31433
J

K mol

��



Solution

As gE and hE values are not given at the same mole fractions, experimental data are first regressed using 

a suitable mathematical function. Typical expressions for this type of data are Legendre polynomials, 

Redlich-Kister expansions or sum of symmetric functions. For this example we choose the latter equation 

with 6 parameters (order 3) for the excess enthalpy regression:  
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We define the objective function OF as the sum of squared deviations between experimental data and 

calculated values for all data points:

OF aSSF
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A vector with starting values uniformly distributed in the range between -1000 and 1000 can conveniently 

be generated using the random function runif: 

aSSF runif 2 norder
 1000	� 1000���

The minimize function will now find the minimum of the objective function by varying the parameter values 

in the vector aSSF:

aSSF Minimize OF aSSF��� OF aSSF 2.21 10
3

��

The regression result can be visualized in a graphical representation:
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In order to better judge the results of a regression, especially with respect to the correct description of 

the partial molar excess enthalpy at infinite dilution, the value of -hE/(x*(1-x)*8) is often plotted in the 

same diagram. The term is divided by 8 to bring it into a similar order of magnitude.
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The importance of this additional line can easily be demonstrated by increasing the number of parameters 

(increase norder). At higher order, the SSF model tends to produce unrealistically high slopes close to 

mole fractions of zero or one. 



To regress gE or gE/RT precisely, mostly the Redlich-Kister expansion or a Legendre-polynomial is used. 

The advantage of the Legendre polynomial lies in the simple calculation of the derivatives required for the 

calculation of the activity coefficients. As the Redlich-Kister expansion, the Legendre polynomial is used 

to expand the parameter A of the Porter expression gE=A*x1*x2 as function of composition:

gE = x (1-x) ( a1 Q1 + a2 Q2 + a3 Q3 + ..... )

with            a1, a2, a3, .....        adjustable parameters 

and            Q1  = 1     

     Q2  = 2x-1                  

                 Qk  = ((2k-3)(2x-1)Qk-1 - (k-2)Qk-2)/(k-1)
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We again define the objective function OF as the sum of squared deviations between experimental data 

and calculated values for all data points:
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A vector with starting values uniformly distributed in the range between -0.1 and 0.1 can again 

conveniently be generated using the random function runif: 

aLeg runif nLeg 0.1	� 0.1���

The minimization function will now find the minimum of the objective function by varying the parameter 

values in the vector aLeg:

aLeg Minimize OF aLeg��� OF aLeg 1.069 10
5	
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The regression result can be visualized in a graphical representation:
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In order to better judge the results of a regression, especially with respect to the correct description of 

the partial molar excess Gibbs energy at infinite dilution (and thus the activity coefficients at infinite 

dilution), the value of -gE/(x*(1-x)*8) can be plotted in the same diagram. This is usually not required in 

case of models like Wilson, NRTL and UNIQUAC, which do not tend to produce higher order artefacts in 

the diluted ranges. The representation can be further improved by plotting also -ln(�1)/8 and -ln(��)/8. 
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The values for -TsE can now be calculated from RT*gE - hE and all three functions as well as the 

experimental data can be shown in one diagram: 
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